Sixth Northwest Conservation & Electric Power Plan

Proposed Combined-cycle Power Plant Planning Assumptions

Jeff King

Northwest Power and Conservation Council

Power Committee

Portland, OR

October 15, 2008

Northwest generating project development

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Gas combined-cycle plants now constitute 12% of Pacific Northwest generating capacity

Factors affecting future role of combined-cycle plants

- Easily dispatchable baseload energy generation; full peaking capacity.
- Can be designed to provide load-following and supplemental peaking capacity.
- Potential, though not well-suited to providing regulating capacity
- Lowest per-MW CO2 production of the fossil resources
- Relatively short development and construction lead time
- Non-CO2 air emissions can be controlled to very low levels
- Relatively easy to site and permit
- Low capital investment
- Thermally-efficient, but sensitive to fuel price

Combined-cycle updates for Sixth Plan

- Plant configuration and capacity
- Project development and construction costs
- Near-term capital cost trend (2010 2015)
- Fuel costs
- O&M costs
- Dispatch parameters
- Capital cost uncertainty
- CO2 allowance costs

Reference plant

400 MW (nominal) natural gas-fired G-Class combined-cycle power plant. 1 GTG x 1 STG configuration w/25 MW duct firing. 390 MW baseload; 415 MW full power. Evaporative cooling, SCR for NOx control and CO oxidizing catalyst for CO and VOC control.

Characteristics generally based on PGE Port Westward

Generating Plant.

Problems re: assessing plant capital costs

- Rapid escalation of capital costs in recent years
- Variety of plant configurations, technology and features
- Sensitivity of output to elevation, ambient temperature and certain features, e.g. cooling technology
- Several recently reported costs are for completions of suspended projects
- Poor documentation of reported costs
- Technology generational turnover may be underway

Sources of capital cost info

- Announced as-built costs for actual plants
- Announced preconstruction estimates for proposed plants
- Recent transactions
- EIA 2008 Annual Energy Outlook (June 2008)
- NETL Cost & Performance Baseline for Fossil Energy Plants (August 2007)
- CEC Comparative Costs of California Central Station Electricity Generation Technologies (2008)
- Lazard Levelized Cost of Energy Analysis (June 2008)
- CERA Capital Cost Forum (proprietary)
- Consultation w/representatives on Council's Generating Resources Advisory Committee

Reported combined-cycle project costs

Comparison to other surveys & estimates

Proposed combined-cycle capital cost

Adjustments to arrive at model input values (2006 \$/kWa, 2010 service)

	Overnight (Baseload Capacity)	Overnight (Incl. Duct Firing Capacity)	Derate to Interconnect ion (0.5%)	Derate for Lifecycle (Aging Effects) (2.7%)	Total Investment (Nominal\$) ^c
5 th Plan: 2x1 540MW Base + 70 MW DF				\$591	\$657
Proposed 6 th Plan: 1x1 390 MW Base + 25 MW DF	\$1250	\$1205 ^b	\$1210	\$1245	\$1420

- Except nominal (as-spent \$) in Total Investment column a)
- 390 MW @ \$1250/kW + 25 MW @ \$510/kW b)
- **IOU** financing

Whither capital costs? (for discussion)

Natural gas price forecasts

Medium case

Firm Incremental (New resources)

Total cost (fixed + variable)

Cost of energy

IOU financing

2010 service

Westside NG - Proposed 6th Plan

Sensitivity to fuel price

IOU financing

2010 service

Westside NG

85% Capacity factor

Sensitivity to service date

Resource comparison

2010 service

Point of interconnection (wind incl. R & LF)

Federal production tax credits for wind

Baseload operation

Bingaman/Specter CO2 capping cost

Combined-cycle power plant: summary of planning assumptions

- Advanced (G-class) combustion turbine technology
- 1 GTG x 1 STG configuration w/25 MW duct firing
- 400 MW (nominal): 390 MW (baseload), 415 MW (peak).
- 65 MW load-following capability
- 7110 Btu/kWh (baseload, lifecycle), 53% efficient
- \$1245/kW overnight development and construction cost
- 24 mo project development, 9 mo preconstruction, 30 mo construction (63 mo overall)
- Earliest service for new project ~ 2014

Next steps

- Review O&M assumptions
- Define capital cost uncertainty
- Settle on dispatch parameters
- GHG control scenarios & related allowance costs
- > No action required by the Council at this time

Combined-cycle technology

